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Abstract

We study the heavy traffic regime of a multiplexer driven by correlated in-
puts, namely the M|GI|oco input processes of Cox. We distinguish between
M|GI]oo processes exhibiting short or long-range dependence, identifying for
each case the appropriate heavy traffic scaling that results in non-degenerate
limits. As expected, the limits we obtain for short-range dependent inputs
involve the standard Brownian motion. Of particular interest though are our
conclusions for the long-range dependent case: The normalized queue length
can be expressed as a function not of a fractional Brownian motion, but of
some other stable non-Gaussian self-similar process. Thus, the M|GI|oo pro-
cesses serve as an example demonstrating that, within long-range dependence,
fractional Brownian motion does not assume the ubiquitous role that its coun-
terpart, standard Brownian motion, plays in the short-range dependence setup,
and that modeling possibilities attracted to non—Gaussian limits are not so hard
to come by.
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1 Introduction

The apparent presence of long-range dependence and self-similarity in network traf-
fic, that has been established in numerous studies of WAN [21], Ethernet [13] and
VBR video [3] measurements, raises the need to revisit various performance anal-
ysis and design issues in this new regime. As some recent experimental work ([7])
already suggests, long-range dependence has a tangible and adverse effect on queue-
ing measures such as buffer overflow probabilities, and consequently its presence is
not to be overlooked or underestimated.

Roughly speaking, this phenomenon of long-range dependence amounts to cor-
relations in the packet stream spanning over multiple time scales, which, although
individually rather small, decay so slowly that they are non—summable in the long
run, thus affecting performance in a drastically different manner than that predicted
by traditional, summable correlations, Markovian models. In an effort to gain some
understanding into long-range dependence, and in particular into the fundamentals
of its impact on queueing, various traffic models that account for non-summable
correlation patterns have been proposed. These models include, among others, frac-
tional Gaussian noise inputs [1], fractional Brownian motion [16] and on/off sources
with Pareto interrenewal periods [5], with early results yielding buffer asymptotics
of radically different nature than the exponential tails, that typically characterize
Markovian models.

In this paper, we consider the class of M|GI|co input processes, which fall in
the category of models that can account both for short and long-range dependent
behaviour. An M|GI|oo input process is understood as the busy server process
of a discrete-time infinite server system fed by a discrete-time Poisson process of
rate A (customers/slot) and with generic service time 0. Such M|GI|co processes
have already been used by Paxson and Floyd to successfully model WAN traffic in
[21]. What is more, a very attractive justification for M|GI|oo modeling is given
by the fact that, as it is argued in [14] and [20], these processes emerge simply
by combining traffic generated by on/off sources with a Pareto distributed activity
period, and letting the number of sources go to infinity, so as to obtain a behaviour
identical to that of a M|GI|oo input stream with Pareto distributed o.

The M|GI|oo processes are very flexible and allow for direct control of their cor-
relation patterns through o (see Proposition 2.1 and (2.1)). They are also extremely
tractable; a variety of buffer tail probabilities for a multiplexer fed by M|GI|oo in-
puts are obtained in [18] and [20]. Surprisingly enough though, in the long-range



dependence setup, these results provide hyperbolic buffer asymptotics, altogether
different from the Weibullian tails obtained under the fractional Brownian motion
assumption. Here, we will try to further explore this fact, this time by devel-
oping some queueing theory for an M|GI|oo process feeding a multiplexer that
operates in heavy traffic. Our motivation for going to heavy traffic is twofold :
First, given that under short-range dependence heavy traffic analysis has offered
useful standard Brownian motion characterizations of queueing networks, it would
be interesting to try to extend the theory to the long-range dependence setup. This
would possibly furnish evidence demonstrating that fractional Brownian motion, the
long-range dependent analog of standard Brownian motion, plays a similar central
role in the modeling of long-range dependent traffic. Secondly, for the particular
case of M|GI|oco inputs, a heavy traffic analysis would help elucidate the observed
differences in buffer asymptotics between M|GI|oo and fractional Gaussian noise
inputs. Unless these differences are due to some fundamental structural discrepan-
cies, one would expect that, in the heavy traffic regime, both models would collapse
to a fractional Brownian motion characterization, similarly to what happens under
short-range dependence, where different models eventually collapse to a description
involving the standard Brownian motion. On the other hand, if the abovementioned
differences are due to some different salient features of the M|GI|oo and fractional
Gaussian noise process, it would be reasonable to expect that, despite the asymptot-
ically identical correlation patterns, the differences would carry over and manifest
themselves even more clearly in the heavy traffic regime.

The results of our investigation confirm the latter statement. First, we find
that, under short-range dependence, the class of M|GI|oo inputs belongs to the
domain of attraction of the standard Brownian motion, as expected. Next, and
most importantly, we show that under long-range dependence, in particular for a o
in the domain of attraction of a non—-normal stable law, the M|GI|oco process is not
attracted to a fractional Brownian motion. Instead, the normalized heavy traffic
queue length is expressed as a function of a non—Gaussian o—stable self-similar
process. This result underlines the fundamentally different nature of the long-range
dependent M|GI|oo processes and also points to the fact that fractional Brownian
motion does not necessarily play the same key role that standard Brownian motion
assumes under short-range dependence. Within long-range dependence, there seems
to be a choice for distinct modeling possibilities; and, as our study suggests, it is
not at all difficult to encounter a rather simple, potentially useful model, that is



attracted to non—Gaussian limits.

The rest of the paper is organized as follows: The class of M|GI|oco input pro-
cesses, along with some of their properties, is introduced in Section 2. We present
our multiplexer model in the heavy traffic regime in Section 3. Our heavy traffic
results are then stated in Section 4, while Section 5 addresses their implications.
Finally, we give an outline of our proofs in Section 6.

A few words about the notation used here. All RVs are defined on some prob-
ability triple (2, F,P), with E denoting the corresponding expectation operator.
Weak convergence is denoted by =>. We write f ~ g when mll)rgo f(z)/g{z) =1, and

fr < gr when Tlglgofr(x) = rl_i_}r{.log(x), z € R.

2 M)|GI|co processes

As we intend to model short and long-range dependence through the busy server
process {bp, n = 0,1,...} of a discrete-time M|GI|oo system, we collect in this
section some pertinent facts about {b,, n =0,1,...}, that have already been estab-
lished elsewhere ([6], [18], [19]), and will be used in the sequel.

To describe the process {b,, n = 0,1,...}, consider a system with infinitely many
servers : During time slot [n,n + 1), Bp41 new customers arrive into the system.
Customer j, j = 1,...,Bp+1, is presented to its own server and begins service by the
start of slot [n 4 1,n 4 2); its service time has duration 0,41 . Then b, denotes the
number of busy servers, or equivalently of customers still present in the system, at
the beginning of slot [n,n+ 1), with b denoting the number of busy servers initially
present in the system at n = 0.

The IN-valued RVs b, {#41, n=0,1,...} and {05, n=0,1,...; §=0,1,...}
satisfy the following assumptions: (i) The RVs are mutually independent; (ii) The
RVs {Bn+1, n = 0,1,...} are i.i.d. Poisson RVs with parameter A > 0; (iii) The
RVs {onj, n=1,...; j =1,2,...} are i.i.d. with common pmfG on {1,2,...}. We
denote by o a generic IN-valued RV distributed according to the pmf G. Throughout
we shall assume that E [o] < oco.

It is also helpful to introduce the forward recurrence RV & associated with o.
This follows the equilibrium distribution of o, i.e.,

PnEP[6>n]=E_1[oT.§P[0>j]’ n=0,1,... (2.1)
J=n



and, as part 2 of the following proposition shows, it directly controls the correlations
in the {b,, n=0,1,...} stream.

Proposition 2.1 The busy server process {b,, n = 0,1,...} admits a stationary
ergodic version, still denoted by {bn, n=0,1,...}, with the following properties:
1. For eachn =0,1,..., the RV b, is a Poisson RV with parameter \E [o].
2. Its covariance function is

COV(bn, bj) = )\E [0’] F|n—j|’ n,j = 0, 1, ‘e
where T'p, n =0,1,..., is given by (2.1) .

Additional information about the stationary busy server process {b,, n =0,1,...}
is contained in the characteristic function of the partial sums of the process, i.e., in

,
@T(O)EE[exp (iOan)] r=1,2,..., 8eR
n=1

Since this quantity plays instrumental role in our results, we will list below the
complete expression, whose derivation can be found in [18] and [19] :

Proposition 2.2 For each r =1,2,..., and 8 € R, it holds that

In®,(6) = —AE[o](1-E[e/™n071]) 4 XE[(r — o) *e]

=Ar+ A (1 - e—w) i E [ew min(r,e) _ 1] (2.2)

Having presented the necessary facts about the M|GI|oo busy server process, we
next describe our heavy traffic setup.

3 The multiplexer in heavy traffic

We view the multiplexer as a discrete—time single server queue with infinite buffer
capacity, operating at a constant rate and in a first—come first-served manner: Let
Qn denote the number of cells remaining in the buffer by the end of slot [n — 1, n),
and let b,41 denote the number of new cells which arrive at the start of time slot
[n,n + 1). If the multiplexer output link can transmit ¢ cells/slot, then the buffer
content sequence {Qn, n =0,1,...} evolves according to the Lindley recursion

Qo=0;, Qupy1= [Qn+bn+1 -—C]+, n=90,1,... (3.1)



The stationary busy server process of a discrete-time M|GI|oo system we dis-
cussed in section 2, will now be used to model the arrival process {b,, n =1,2,...,...},
thus providing us with a very simple way of accounting for time dependencies in
the cell input stream. So, with the M|GI|oo process {b,, n = 1,2,...,...} be-
ing characterized by the pair (A,o), the average input rate to the multiplexer is
E[b,] = AE [0], and it can be shown that the system is stable if AE [0] < c.

Our goal here is to examine the behaviour of a system that is almost fully utilized.
This typically involves obtaining limiting expressions of properly rescaled quantities
of interest, as the traffic intensity p tends towards its critical value 1. Although,
in general, it may be possible to derive different flavors of heavy traffic results, one
rather standard technique for studying the behaviour of a queue in heavy traffic
is to consider, instead of a single queueing system, a family of queueing systems,
indexed by an integer parameter r = 1,2,.... By taking, for the rtt system, the
input and the service processes to suitably depend on the parameter r, it is possible
to ensure that, as  — oo, the corresponding traffic intensity p, goes to 1. Adapting
this approach to our context, we consider, instead of just (3.1), a family of Lindley
recursions where, for each r=1,2,...

Q=0 Qh. =[Qh+b 1 —c", n=01,... (3.2)

Note that the stationary M|GI|oo busy server processes {bl,,n = 1,2,--:}, r =
1,2,..., above are described by the Poisson arrival rate and service RV pair (A, o).
That is, in our parametrization, every member of this family of queueing systems
depends on r only through the input process, and in particular its Poisson rate
parameter )., while the service RV ¢ and the multiplexer release rate ¢ remain the
same.

It can be shown that the Lindley recursions (3.2) admit the following equivalent
representation, which is useful for establishing heavy traffic limit theorems: By
setting, for each r = 1,2,...,

n
Sy =0; S,’;Ez:bg—nc, n=12,...
=1

we can write
Qn =st Sy, —inf{S}, 7=0,1,...,n}, n=12,...

Before putting ourselves in the heavy traffic regime by letting the traffic intensity
go to 1, it is necessary to rescale in a meaningful manner, both in time and in state



space, the processes of interest. We do so by introducing the scaling ¢, r = 1,2,...,
to define the continuous time processes

— Xtr]
qT = t>0
PTG
and
fr]
st = t>0
PTG
so that
;N r > .
gt = S O%Y;fg{sx , 120 (3.3)
for every r = 1,2, .... The stationary version can be obtained by letting ¢ = oo and

then r — o0, in order to drive the system to heavy traffic. Here, we will interchange
the order of the limits, taking r — oo first and ¢ — oo afterwards, to again collect
the same stationary RV (see [11]). For a classical GI|GI|1l queueing setup, where
second moments are always assumed to be finite, the scaling that gives rises to
non-degenerate limits is {, = +/r. In our M|GI|oo situation though, that allows for
an infinite second moment of o, the question arises as to what should the suitable
scaling be when the input process exhibits long-range dependence. Although the
answer is not immediately obvious, it is easy to see that, in all cases, to avoid
collecting only a law of large numbers result, any candidate {, should obey the

following necessary condition :

Condition 3.1 The sequence (., r =1,2,..., satisfies

lim {, = +00 and lim & =0.
r—00 =00 1

Without any further requirements on ¢, we may now enforce the heavy traffic
assumption below, which guarantees that, as » — 00, the family of queueing systems
described by (3.2) gradually approaches instability.

Assumption 3.1 The sequence A\, 7 =1,2,..., satisfies
) r
Jim (\E[o] —c) o=

for some v > 0.



4 The heavy traffic results

In the heavy traffic setup of the previous section, our first task is to identify the
appropriate scalings {,, r = 1,2,.. ., for the various choices of the distribution of the
RV o, that controls the correlations in the input cell stream. Clearly, our aim is to
obtain, as 7 — 00, a non-trivial limiting process {s§°,¢ > 0}. Fully characterizing
this process, especially in the somewhat intriguing case of long-range dependence,
will then provide information about the buffer content distribution through (3.3).

With Assumption 3.1 being enforced throughout, we distinguish between three
different cases, which correspond to different tail behaviour of the distribution of o.
It is worth pointing out here that, for each case, the scaling (, is essentially unique,
in the sense that any other scaling ¢/ that yields a non-degenerate limit is related
to ¢, according to ¢ = O({r)-

Our first result addresses the case where the M|GI|oco process is short-range
dependent, i.e., 52, T, < 400, or, equivalenty (see [18]), E [0?] < +o0.

Proposition 4.1 (Short-range dependence) If E [0?] < +oo then with ¢, = /T,
r=1,2,..., i holds that

o0
{sh,t >0} =, {—7t+Jc(1+2ZFn) B, t >0}

n=1

where {By,t > 0} is a standard Brownian motion.

The next result deals with what turns out to be a cross-over case between short
and long-range dependence. Despite the fact that E [02] = +oo and, as a con-
sequence, the sum of the correlations is Y 52, ', = +o00, o is still attracted to a

Gaussian RV, while > _ I',, is a slowly varying function.

Proposition 4.2 Let E [0?] = +00 and E [1[0 < ] 02] ~ 2E [0] h(z), where h(x)
is a slowly varying function. Then with {, = \/rh(r), r=1,2,..., it holds that

{sf,t >0} =>, {~yt++c B;, t >0}
where {Bg,t > 0} is a standard Brownian motion.

We finally come to the bona fide long-range dependent case, where the infinite
sum of correlations } o> ; I';, = +00 is induced by a o that has a tail behaving like
h(z)z™%, 1 < a < 2, where h(z) is a slowly varying function. As a result, o belongs
to the domain of attraction of a non—Gaussian stable law ([8], [10], [22]) with index
o, a fact denoted by o € D(a).



Proposition 4.3 (Long-range dependence) Assume that 0 € D(a), 1 < a < 2, s0
that P [0 > x] ~ h(z)x~*, where h(z) is slowly varying. By taking (. to be the 1/~
regularly varying function satisfying

lim <h(¢) = (@ - DE[o]

r—oo (&
T

1t holds that, ¥V t > 0,
sy = —yt + Xy

1
where X is a stable Sy <(ctF(2 —a) cos(wz—g‘"-)) @ ,1,0) RV.

We sketch the proofs of Propositions 4.1, 4.2 and 4.3 in Section 6, where, under
long-range dependence, we take on a representative Pareto-o case. A short discus-
sion, however, of Proposition 4.3 is in order here. It is well known (see e.g. [12],
[2]) that the convergence of a normalized partial sum process, such as {sf,¢ > 0},
can only be to a self-similar process, and that the Hurst parameter H may be
determined through the regularly varying scaling (, by

lim gﬂ:wH, z>0
r—=oo (,

Recall that, as it is mentioned in [14] and [18], with a Pareto-a o the M|GI|oco
process already possesses the so-called 2" order asymptotic self-similarity property,
with parameter (3 — «)/2. That is, by aggregating the original process {by,n =
0,1,...} in blocks of size m and dividing by the block size, one can obtain, in the
limit as m goes to infinity, the same correlation function as that of a fractional
Brownian motion. Because of this fact it would be tempting to think that, except
perhaps for a slowly varying factor, the appropriate scaling squared is given by the
rate of growth of the partial sums variance, 73~ and that convergence occurs to
a fractional Brownian motion. Proposition 4.3 however shows that this is not true
and that the asymptotic 2" order self-similarity property is misleading: The proper
scaling does not exhibit any r(3-2)/2 dependence; instead it contains the r1/e factor
associated with the limit theorem for the RV o, when o € D(), where 1 < o < 2.
The marginal distribution of the limiting process is not Gaussian, but stable with
index o, 1 < o < 2. So, the limiting process {s{°,¢ > 0} is not a fractional Brownian
motion but an a-stable self-similar process with infinite variance, Hurst parameter
H = 1/o and dependent increments, i.e., it is not the a-stable Lévy motion, for
which the increments are independent. Further work on determining the dependence
structure of this process is currently in progress.



5 Implications

We dealt with a model of a multiplexer fed by M|GI|oo processes, that account
for strong dependencies in the input cell stream. Our study contributes to the
analysis of such non-standard queueing systems, with long-range dependence, in
the heavy traffic regime, where traditional queueing has provided useful diffusion
approximations. Related work is also reported in [5], [16] and [23]. Note that in
the work of Norros ([16]) the presence of fractional Brownian motion is postulated,
while in [5] Brichet et al. show how fractional Brownian motion can arise naturally
in the heavy traffic analysis of on/off sources with long-range dependence. Given
that the M|GI|oo processes also arise as the superposition of infinitely many on/off
sources (see [14]), it behoves one to ask whether our results, that belie the presence
of fractional Brownian motion, contradict those of [5]. This apparent contradiction
is resolved though, by observing that, apart from the different way in which heavy
traffic is achieved in [5], the link to fractional Brownian motion is established for
a particular choice of the on/off periods, yielding a subset of on/off sources that
is distinctly different from that considered in [14], which leads to the M|GI|oco
processes. Thus, our results stress that, in contrast with short-range dependence,
within long-range dependence itself there exist modeling possibilities that are of
fundamentally different nature. Some are attracted to fractional Brownian motion,
giving rise to Weibullian buffer asymptotics, yet others are not; we have shown that
the M|GI|oo model is attracted to a a—stable self-similar process, where the buffer
asymptotics are expected to decay like z'~®. And in that sense, it seems that the
question as to what is the effect of long—range dependence does not have a clear-cut
answer, since this may depend heavily on the particular choice of model.

6 Proofs

We provide here an outline of the calculations that determine the marginal distri-
bution of the limiting process {s§°,¢ > 0}. First, under Assumption 3.1, it is easy
to conclude that
. n_
Jim Efsf] =—vt, 0<t<T

To alleviate notation we will look at ¢ = 1; any other ¢ can also be handled similarly.
To that end, let us consider the characteristic function

Pr(0) = Elexp (i6s])], #€R, r=12,... (6.1)

10



and the auxiliary quantity

A.(6) =InE [exp ('iG

r

Z(b;;—,\,E[a]))], fcR, r=12,... (6.2)

&z
By writing
q—%gj xmm+<AEppc r=1,2,... (6.3)
it follows that
mwpmm< @+WQMEM—Q» r=1,2,... (6.4)

In order to avoid a degenerate limiting RV, we are interested in selecting (,, r =
1,2,..., such that the limit

A0) = lim A,(0), 0€R (6.5)

exists, is non-zero and finite, in which case, under Assumption 3.1, so does the

limiting characteristic function
¥(0) = Jlim 4:(0), 6ER (6.6

So, provided that the limit (6.5) exists and Assumption 3.1 holds, by using (6.4),
1(#) can be expressed as

P(6) = A0 ge R (6.7)

After some algebra, Proposition 2.2 enables us to write

A(0) = —-NE[o] 7‘%6:- + ME[o]r (exp (Cr> - 1)

s (- ()£ (-2 o ()

n=1
10
= —NE[o ]r—+)\rE[0]z0 —%%
T E—‘ r
1-— T r
{1+ ex%( Cr) Z_f%g(’r—n)r‘nexp (Cf )}
) _ 8 _
= ATE[U]W?(%)_I—l)—)\E[U]OQ p(f;) 1
r E 5
l_exlg# 32—:(7' n)Ty, exp (gn) (6.8)

11



To ease the computations, we introduce the quantities

KT(O)ET( +——exp(0)), GER, r=1,2,... (6.9)
Cr Cr
and
91 9
=0?— Z n)Ty exp , 6eR, r=1,2,... (6.10)
r n=1 Cr
In all cases, we will seek (., r = 1,2,..., ensuring that the limits
K0) = rll)rgo K.(0), 0eR (6.11)
and
F6) = Tll)r{.lo F.(6), 6€R (6.12)

exist and are finite. Since, by Condition 3.1, rll)rgo (r = +o0, it follows that

1 160
. exp (z—r) -1 ) 1 —exp (—5)
L (6.13)

and, by virtue of Assumption 3.1 and (6.9) - (6.12), the limit (6.5) of (6.8) can be
rewritten more compactly as

A@)=—c(K(0)+F(0), 6€R (6.14)

As we have already mentioned, the choice of {,, r = 1,2, ..., should yield K(6) and
F(0) such that F(0) + K(0) is not identically zero.

Short-range dependence (32, I');, < 400)
With the scaling {, = /7, r=1,2,..., (6.9) and (6.11) yield

) 62 62 62
K(9)=rll)r&r(§—o(r>>=3, feR (6.15)
To compute F(0), recall first that, since 'y, > 0, n = 1,2,..., the implication
o
ern <+oo = lim nly =0 (6.16)
n=

holds true and, by Cesaro convergence, we then have

ZnI‘ exp (\/0_ )

lim -
r—oo r

< lim - ann =0, 0eR (6.17)

r—00 r

12



Applying this fact to the limit (6.12), where in (6.10) we have inserted the scaling
$r = /T, gives

if

r
F(6) = 6* rllg)lo Z Ty, exp (\/Fn) , BeR (6.18)
n=1

In order to show that the exponential factor can effectively be replaced by 1 in F(6)
above, we form the difference below and bound it, for r. = 1,2,..., by

£ on(22) )

Te

. T .
< ZF" exp (%n) -1 ‘+ Z Ty | exp (%n)—l l
n=1 n=re
< 3 exp (ﬁn) -1 ’+2 i r (6.19)
B n=1 \/F n=re "

Now, since for fixed r. it holds that
lim ETG ex (ﬁn)—l |—0 feR
r—00 ] p \/F -

by invoking the fact that

o0 o
Y Tn<+4o0 = Y Tn<e Ve>0

n=1 N=re

for r. large enough, we see that each of the two terms in (6.19) can be made arbi-
trarily small, so as to yield

T 0
r, (exp (Ln) —1)' =0, 6€R
e (7

therefore F(0) of (6.18) is simply

lim
r—00

F(0)=6*) Ty, 0€R (6.20)

Substituting (6.20) and (6.15) in (6.14) and inserting this in (6.7) we obtain a

Gaussian characteristic function

1(0) = exp (—i9'y - %020(1 +2 i Fn)) , '0eR (6.21)

n=1

13



Long-range dependence (372, 'y = +00)

We illustrate the results under long—range dependence by focusing on a o that
follows a Pareto-like distribution with parameter o, where 1 < o < 2. In particular,

we take ( 1y _ (5 4 2)l-c
n+1)"7""—-(n+2)"
Plo>n]= T gi-a , n=0,1,...
for which )
Elo]= 5=
and p
lim 27> _ (- B[]

n—00 n-a
Consequently, the distribution of the forward recurrence time & associated with o
is given by

1 oo
FnEP[a>"]=-E-HZP[0>j]=(n+l)1_°‘, n=0,1,...
j=n

We begin by noting that the case a = 2 needs to be treated separately (Proposi-
tion 4.2), because even though E [¢?] is infinite, o still belongs to the domain of
attraction of the normal distribution (but not in the domain of the so-called normal
attraction of the normal distribution, for which E [0?] < 4+00) . The input pro-
cess {bp,n = 1,2,---} exhibits long-range dependence, yet is barely does so, since
Yon=il'n ~ Inr = h(r) is slowly varying. So, undertaking the o = 2 case first, we
proceed to show that the appropriate heavy traffic scaling is {, = 1/Th(r) = Vrinr,
r=1,2,.... We begin by substituting this scaling in (6.9), so that (6.11) reads

K@) = limr(l-}-—w——ex (i—)>— lim r o -0 0
- oo vrinr P Vrlnr/) o \2rlnr rlnr
1 (o2 o(7%)
= lim —[=-—=22"2) =0, 9cR (6.22)

r=oolnr | 2

rinr

Next, consider (6.10), which in this case becomes
1 Hron ibn
— p2?
F©) = 0 rinr Z 1 n+1 P (\/frlnr>
1= 16n 1 = on 16n
= s () - = (77s)
,Inr £ n+1 Vrinr 'rlnrzln+1 P rlnr

= 492i 3 lex ( in )ex (__’L_ﬂ_)
Inr = n P\Vrtnr/) P\ Vriar

14



el gl ’X‘:l n ex(z'On)
Inr rlnr i n+1 P\Vriar
forr=2,3,..., 8 € R. Since

Tf N o ( ion )
on+l P Vvrinr

it is clear that only the first sum will yield a non-zero contribution to the limit, so

<r-1, #e€R

we have

)

1 &1 ion
St 2_ [—
F () 0 lnrn=1nexP< rlnr)

6/vVrinr T

T 1 .
= 0*— (ZEH/O Zemdx>
n=1 n=1

0/Vrinr | irz _
L / e = 1 dzc)
0

e —1

0/Vrinr gire _
- 02<1+ii/ udac>, eR (6.23)
0

1—e iz

X
®
T
By
|

One can verify that the denominator in the integral above can be rewritten as
1/(1—e~®) = 1 (1 — i cot (z/2)) and then it is easy to see that, because |¢"® — 1| <
2, we get

2
< lim id =0, R
T30 \/rlnr

lim
=00

/G/W (

ere — 1) dx

0

so that F.(0) of (6.23) is

1 6/Vrinr
A

- 02
F.(0) <6 <1+ v e

e — 1) cot (z/2) dw) , BeR (6.24)

In Lemma A.l1 we essentially show that (6.24) asymptotically remains unchanged if
we replace %cot (z/2) by %, thus leading us to the expression

6/vriny Sirc __
F(o) = 6 (1+ lim i/ e -1 dx)
r—=oolnr Jo x
_— tr
= ¢ <1+ lim —- mr e~ 1 da:) , ER (6.25)
r—oo lnr Jo z

15



The evaluation of the limit is supplied in Lemma A.2. Inserting the result in (6.25),

combining with (6.22) in (6.14) and finally in (6.7) yields once more a Gaussian
characteristic function :

P(0) = exp (—i0'y - %920) , 0eR (6.26)

We subsequently study the case where 1 < & < 2 (Proposition 4.3), noting
that o is now in the domain of attraction of a non-normal stable law. Of primary
importance in this long-range dependence setup is the parameter H, which we define
as

1
=—, l<a<?2 (6.27)
«

We will show that the appropriate scaling turns out to be {, =r#, r=1,2,...,
giving rise to a non-Gaussian, o—stable, self-similar process {s{°,¢ > 0}, whose
Hurst parameter H is given by (6.27). Observe that 1 < a < 2 will yield H in the
range 1/2 < H < 1, while in our previous calculations, where o = 2 , the emerging
self-similar process was a standard Brownian motion, whose corresponding H is
exactly 1/2.

Starting from K (6), we have

i 0 10 ) 62 62
K(©) = Tll)rglor (1 o T exp ('I‘H)) - rlggor (27‘2H -0 (7‘2H>>

2 0 —023-
= lim 71728 (9—— (’f )) =0, f€R (6.28)
r—00 2

pe>: 8

Turning to F.(6), r =2,3,..., we write
RO = LS e il
0 = M_HT;(T_n)(n+l) exp (g

r

1 _ 16
0213—H (r—n+1)n'"%exp <ﬁ(n - 1))

n=2
2 - 2 o 29
0°— 'r2H Z )exp —(n—1)
10 1
7‘2H T P Z n~ %exp ( (n— 1)) 92m

Since 1 < & < 2, we have 0 < 2H — 1 < 1, therefore the third term above vanishes
as 7 — oo and, by Cesaro convergence, so does the second. We can then rearrange

16



the only contributing summand in the limit (6.12) as

l-a
F(e) = lim rH(a_l)(z_a) XT: ( |0|a (M) IGI
n=1 r

r=>00 r

2—a
—|gjt (Eﬂ> @ ) exp (’irl“H sgn(9)ﬁ|rﬂ> , 6eR

r

Clearly, since F() and F'(—6) are complex conjugates, it suffices to carry out the
calculations only for § > 0. Introducing the staircase function T} : R — R

g 2lg<czr<Zg, 0>0 n=1,2,...
0 otherwise

T(z) = {
and letting k, = r'=H, r = 1,2,..., it is not difficult to check that F(6), 6 > 0
assumes the form

9
F(0) = 6% lim rH(@-D2-a) / T ()~ exp (ik,0T;(z)) d=z (6.29)
r—=0 0
9
—0°"! lim rH(O‘_l)(Q"")/ Tr(x) 2% exp (k0T (z)) dz, 6 >0
r—o00 0

Application of Lemma A.3 to the each of the two limits in (6.29) implies that we
can replace T,(z) by z, and, as a result, F(#) becomes

8
F(6) = lim rH(e-1(2-a) / (0% ~ 6°19%) exp (ik,02) do, 6> 0
0

r—=oo
By defining the quantities
;
I1_o(6) = 0% lim rH(e-1DC-o) / z'~%exp (ik.0z) dz, 6>0 (6.30)
0
and

(4
Io_o(0) = 67! lim rH("‘l)(2"")/ x>~ “exp (ik,0z) dz, >0 (6.31)
0

r—00

we can express F(0) as
F(0) = I—a(0) — Ir-a(f), 0>0 (6.32)

Appealing to the results of Lemma A.4, where we carry out the detailed calculation
for I1_o(0) and Io_4(6), and recalling that F(#) and F(—6) are complex conjugates,
we finally obtain

F(9) = |6|°T(2 — @) exp ('hr sgn(0)2_Ta> , e (6.33)

17



Upon inserting (6.33) and (6.28) in (6.14), then this in (6.7) and rearranging, we
collect the limiting characteristic function

»(0) = exp (—wy — ¢0|°T(2 — @) cos(r2=2) (1 — isgn(6) tan(%))) . 0cR
(6.34)

) 1, —"y) RV (see [22]).

Q=

which corresponds to a stable S, ((cF(Z —a) cos(7r2_T°‘))

A Appendix

Lemma A.1 If rllglo 6p = 0 then

. el 1 (g
rllglo ; ~ ( ) cot, i 1) dr =0 (A.1)

Proof. The Taylor expansion of the function z +— z cot z gives zcot z = 1 —22/3 +
o(z?), which enables us to write

l(a;cotx ) _a:+o(a;2)_ 1+o(x2)
s\ 2979 12Tz TP T e

Now, recall that V ¢ > 0 3 2, > 0 such that for |z| < z. it holds that o(z?)/z? < ¢

and, by rl_l_)r(r)lo 0 = 0, 3 r; such that when r > r. we have |d,| < z.. As a result, we
conclude that

1/ T 1
’;(500t§_1)‘5('ﬁ+6)l67|1 r>re, x| <6 (A.2)

Combining (A.2) with |¢r® — 1| < 2 and with our assumption Tl_l}{.lo d, = 0, quickly
leads us to (A.1). ]

Lemma A.2 It holds that

18



Proof. The integrals for 8 and —6 are complex conjugates, so it suffices to establish
(A.3) for 6 > 0. Let us define R = 0,/;= and write, for large r,

Rzm_l 1 za:_l Rz:c_l
/ ¢ dr = /e d:1:+/ ¢ dx
0 z 0 x

1eit _ 1 R iz
=/ - dx—lnR+/ i (A4)
0

It follows that only the In R term above will offer any contribution to the limit in
(A.3). To see this note that the first term is easily bounded as

1 ia:_l
/ £ dx
0 z

while the last one can be handled by a contour integration :

(A.5)

-1 e etn/2 z iR Z Re™ ez
0 = / —dz+ —dz+ —dz+ —dz
R % e”"/l A
-1 7r/2 R iz
= / ?dm+z'/ exp (cos ¢ + 4 sin ¢) d¢+/ "
-R T

+4 /7r exp (R(cos ¢ + ising)) d¢
w2

This implies that

R iz
[
/ —dz
1 x

where all the terms in the right hand side are bounded uniformly in R. Then, because
of (A.5) and (A.6), (A.4) will yield the desired conclusion (A.3), after multiplying
by 1/Inr, taking the limit r — +oo and using the fact that

R o~ T s
< / R / 5% g + / RSP s (AL6)
1 X /2 2

w/

In (6
lim In (0y/17) _-L1 950
P00 Inr 2
|
Lemma A.3 Forl<a<2,p>-1, H= % and 6 > 0 it holds that
Jim pH(e-1)(2-a) / z)P exp (1k 0T, (z)) — 2P exp (tky0z)) dz =0  (A.7)
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Proof. We first bound the difference by

0 9
/ T, (z)? exp (ik, 0T ()} dz — / 2P exp (ik,0z) dz
0 0

<

/09 P (eXp (szOTr(a:)) — exp (’Lkrex)) dz

/]
+ / (To(z)? — ) exp (ik,0T(3)) do (A.8)
0

and then bound each of the two terms separately. Recalling that k. = r!=H and
Tp(z) —z < g, r=1,2,..., the first term is bounded as follows :

/00 P (eXp (zk,.HTr(a:)) —exp ('&krﬂm)) dz

9
< /wplexp(ikre(Tr(x)-—x))—H dz
0
RN .
< /OmpZ—!|Tr(x)—x| dx
0 k;'”H'"'
= /xpzn' n
9
= (k o 1)/ 2P dz
0

gr+1

= (7" -1) (A.9)

p+1

We multiply by r#(@=1)(2-®) 314 calculate the limit :

: H{a—1)(2— or—H _ 1 H(a=-1)(2~a —-H -H
T G I e e LR )
) ,r.H(a—l)(2—a) 0 (r_H)
= rll)rgo TH 0+ fr—H
-H
= lim T—H(2—a+(a—1)2) (0_'_ O(T ))
700 r—H
=0 (A.10)

For the second term in (A.8), with p > —1, we have

/ (T (z)? — oP) exp (ik, 0T} (z)) do| < /0 " (T (@) — o?) do
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. /nO\P o grtl
Z(_r-) ;_p+1

n=1

gr+1 pr+l gr+1
S ﬁ :vp dr —

rP 0 p+1

6P+ (r 4 1P+l gptl
rtl  p4 1l p+1

gr+1 1\»P+1
= 1 — _1
p+1 (( +r> )

Again, multiplying by r#(@~1)(2~%) and writing (1 + %)1""‘1 —1=2l4, (l) we
calculate the limit as

lim pH(@-1)(2-0) ((1 s l)p+1 ~ 1) — i H@-DE-a) (fil to (l))
T—00 r T—00 T r

H(a-1)(2—-a) ol
= lim ——— (p+1+—’"))

r—00 r 1
T

=0 (A.12)
where the last equality is derived easily by observing that, whenever 1 < o < 2,

rH(@=1)2-0) = 4(r), After multiplying (A.8) by rH(@=1(2-9) anq taking the limit
as 7 — 400 we invoke (A.12), (A.11) and (A.10), (A.9) to obtain (A.7). [ |

Lemma A.4 For1 < a <2 it holds that

2—«o
2

L_4(0) =0°T(2 — a)exp (’i7r9 ) , >0 (A.13)

and
Ir_o(f)=0, 6>0 (A.14)

Proof. Both statements are clearly true when 6 = 0. To prove (A.13) for 6 > 0
we start from definition (6.30) and perform a change of variable u = k,z to get

Oky
— 0o 1; l—a juf
L_.(0)=0 Thm A u %% du, 6>0 (A.15)
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Writing R = 0k,, r = 1,2,..., for the upper limit and observing that rll)r{.lo R = 400,
0 > 0, this integral can be evaluated by the standard first quadrant contour inte-
gration below:

Reiw/‘Z ro eiO

. iro , .
zl—aezz dz +/ zl—aezz dz+ . zl—-aezz dz
iR roei™/?

R .
0 = / 217 gy +

70 Rei0
R i /2 .
_ / 2172 4y 4 iR2 / exp (ip(2 — @) +iRe™) dg
To 0
_H-2—a ro l~a,-y 4 c 2= 0 ( _ U 10
y "% Vdy+irg exp (49(2 — a) + iree’® ) d¢
R /2
Letting 19 go to 0, we have
R ) /2 .
/ % dr = —iR*® / exp (i¢(2 —a)+ iRe’¢) d¢
0 0
22— R l-a -y
+1i / Yy %e Ydy (A.16)
0

Observe that the last integral above yields a Gamma function :

R i €43
279 lim / Y% Vdy=—e"2T'2-0a), 6>0 (A.17)
0

00

Next, calculate the limit involving the other remaining integral in (A.16), using the
bound

/07r/2 exp (i¢(2 —o)+ iRei¢) d¢

< /07r/2 exp (—Rsin¢) d¢ (A.18)

and the fact that sin¢ > %T‘é, 0 < ¢ < 7/2, which is implied by the concavity of
qu—)singb—%?, for ¢ €[0,%] :

700

i R2-e /2 . < lim R2-0 /2 2R
rggoR /0 exp(—Rsin¢g) dp < lim R /0 exp (*74’) d¢

-R
— z : 2—a l1—e
- 2 rl—l-)IgoR R

= 0, 6>0 (A.19)

Taking the limit as 7 — oo of (A.16), combining (A.17), (A.18), (A.19) and inserting
in (A.15) readily yields (A.13) for 6 > 0.
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Having shown (A.13), it is easy to prove the claim for I,_,(6) by integrating by
parts :

] ) ) 0 )
/ 22T gy = i (92_ae’k’9 -2-a) / ploeihre dzr;) (A.20)
0 1ky 0

After multiplying the equation above by rH(2=1D(2~®) (A 14) follows from

ea®] < 0 [ tim o2 e i L2~ jgmlrn0)
—a = L r—oo k, 1-a

=00 r
. a1 1 .1
= Olimr™ > 4 52 - o) h-a(0)] lim
= 0, 0>0
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